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We analyze the variability in the x-ray lightcurves of the black hole candidate Cyguby linear and
nonlinear time series analysis methods. While a linear model describes the overall second order properties of
the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the
relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive
models. We debate statistical and interpretational issues of surrogate data testing for the present context.
Finally, we suggest a combination of tools from linear and nonlinear time series analysis methods as a
procedure to test the predictions of astrophysical models on observed data.

PACS numbsgs): 05.40—a, 02.50.Wp, 97.80.Jp

I. INTRODUCTION The first step of nonlinear time series analysis is usually
to study the structure of a possible underlying attractor.
CygnusX-1 is one of the best established black hole canHowever, methods from nonlinear dynamics did not succeed
didates. Mass accretion from its primary HDE 226868 leadsn establishing a low-dimensional attractor for x-ray light-
to x-ray emission which exhibits a variability on time scalescurves of CygnuX-1[6]. It is also important to mention that
of tenths of secondgl] up to months[2]. The short-time time series analysis methods usually assume that the under-
variability is assumed to be caused by instabilities of thdying process presents a dynamical system in contrast to a
accretion disk and is usually formally described by shotshot noise model.
noise modelg3-5] which are a specific kind of point pro- As an alternative to the commonly applied shot noise
cesses. These models are inspired by hypotheses about tin@dels, the linear state space modesSM) as a generali-
physics of the accretion process and the processing of x-raysation of dynamical linear autoregressive models including
by Comptonization in the neighborhood of the black hole.the observational noise has been proposed to model the x-ray
Free parameters of these models, like morphology and disrariability of active galactic nuclei in Ref7]. Two attractive
tribution of the shots, are usually tuned to fit the observedproperties of this approach are, first, that the LSSM can be
energy or power spectra. fitted to the data in the time domain and, second, that it
On the other hand, starting from the observed data andxplicitly takes the observational noise covering the dynam-
characterizing the dynamical structure of this observed variics into account. The state space model has been applied to
ability by time series analysis methods might yield valuabledata from Cygnus<-1 in its low state[8]. This analysis has
constraints on astrophysical models. This characterizatiorevealed that a first order autoregressive process describes
can be, for example, a fit of an explicit model to the data orthe dynamics of the x-ray variability well. This predicts a
the extraction of a feature which captures some typical strucshot noise model with an exponential decay and a very spe-
ture of the dynamics. Such a characterization could eithecific mode of excitation of these shots.
inspire new astrophysical models or could be used for addi- In this paper, we analyze x-ray lightcurves of Cygius
tional tests of the predictions of existing models. Of coursefrom its low and intermediate state by the LSSM as well as
there is no direct way for a characterization, either by modby a method which is able to capture deviations from linear-
eling or by feature extraction, of observed data to an astroity. In accordance with Ref8], a scalar LSSM results in a fit
physical model: On the one hand, although the goodnesshat explains the linear correlations of the time series well.
of-fit of a diagnostic model can be evaluated by statisticaHowever, the nonlinear analysis using a measure for time
tests, these tests might have low diagnostic power to detectraversibility of the process, reveals strong deviations from
misspecification of the model. On the other hand, a certaitinearity on exactly that dynamical time scale found by the
feature discovered in the data might be generated by manySSM. To interpret this result consistently, we discuss the
different types of dynamics. Therefore, before drawing con-mathematical and astrophysical implications of linear sto-
clusions about the underlying process from data analysishastic and shot noise models.
different independent approaches should be used and the Finally, we suggest a combination of tools from linear and
plausibility of a fitted model or an extracted feature shouldnonlinear time series analysis methods as a procedure to test
be judged in the light of astrophysical knowledge. the predictions of astrophysical models on observed data.
The organization of the paper is as follows: In Sec. Il we
introduce the data under investigation. In Sec. Ill we discuss
*Electronic address: Juergen@agnld.Uni-Potsdam.de shot noise and linear stochastic models and their relation.
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70 - - - - - where p denotes the intensity of the process. The sampled
time series consists of a superposition of the single shots at
60 r 7 times T; whose occurrence follows E¢l), i.e.,
50 1
g X(t)=2 M O(t-T)e G-T" 2)
3 40 i ;
8
30 with ©(z)=1 if z=0, ©(2) =0 if z<0. We call this process
00 | the classical shot noise process.
The power spectrum of this proce&d is given by[11]
10 : ' : : :
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ime [s S(w)=————, w#0. (©)
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FIG. 1. A 3 s segment of the intermediate state time series.

] The classical shot noise has already been proposed in Ref.
Furthermore, we explain how we use the method of surrof3] to describe the observed variability of the lightcurves of
gate data to test for time rever_3|b|I|ty. Section |V presents thft:ygnusx-l. It consists of exponentially decaying shots with
results, which are discussed in Sec. V. a fixed initial value which occur in time with a constant rate
of probability. Several generalizations have been proposed:
Shots with a decay rate drawn from a certain distribution
have been suggested in R€#%,12,13. A distribution for the

The data were recorded with the Proportional Counter Ardnitial values of the shots was considered in REf4].

ray (PCA) on board the Rossi X-ray Timing Explorer Vikhlinin etal.[15] introduced interactions between differ-
(RXTE). The x-ray activity of Cygnusx-1 is classified as €nt shots. Furthermore, the simple exponential form was re-
low, intermediate, and high, depending on the mean courflaced by more complicated time courses showing an initial
rate[9]. Our analysis is based on two data sets: The first datficrease from zero to a maximum value followed by a decay
set was recorded on 22nd May 1996, 19:05:12—19:48:040 zero[8]. These types of profiles are supported by Monte
while CygnusX-1 was in its intermediate stafé]. The en-  Carlo simulations of astrophysical models of the x-ray pro-
ergy range was 2.0-14.1 kel¢hannel range: 0-35The  cessing by spatially resolved Comptonization in a cloud of
sampling frequency was 256 Hz and the data set consists §0t electrons surrounding the accretion disk].
655 360 data points. The mean number of counts per bin was FOr some generalized shot noise models the power spectra
38.3 with standard deviation 10.0. The second data set we&n be calculated analyticall$,11]; otherwise they have to
recorded on 12th February 1996, 9:37:20—10:03:06, whild®€ estimated from simulated data.
CygnusX-1 was in its low state. The energy range was 2.0—
9.9 keV(channel range: 0—35The sampling frequency was B. Linear stochastic dynamical systems
256 Hz and the data set consists of 394 752 data points. The . .
mean number of counts per bin was 18.7 with standard de- In contrast to Sh.Ot NOISE Processes given by WZX .
viation 7.1. Figure 1 displays a 3 s segment of the first datgontinuous dynamical systems are given by a differential
set. A part of the variability of the data is explained by the €auation
fact that the recording process is a counting process. This S
leads to additive uncorrelated observational noise which is x=f(x,€
Poisson distributed. Due to the high mean count rate this

Poisson noise is well approximated by Gaussian noise.  wheree denotes random perturbations which might influence
the time evolution of the dynamics. An attractive feature of
modeling time series by dynamical systems is that the spe-
cific form of f(x,e) might provide insight in the physics at
A. Shot noise processes work, see Refs[17,18 for two examples from physics and

Shot noise processes are a specific type of point processggs'[lg'zq for application to physmloqlcal time series.
[10]. Point processes are characterized by a probabilistic law In the simplest case, f(.) is linear inx and the dynami-
that some event happens at a certain time. For the simplesal noisee is Gaussian distributed and additive, the system
form of a shot noise model the probabilistic law of occur-represents linear combinations of damped oscillators and re-
rence of events follows a Poisson process and the event is dxators that are driven by Gaussian noise. Since the model is
exponential decay with initial valu®l and decay timer. A linear, all information about the model is captured by the
Poisson process is defined by the property that the probabipower spectrum. For a scalar dynamics
ity of an event to take place in a time intervdlt+ At) is
proportional toAt in the limit of small intervals: X=—ax+e, e~WN(0,0?), (5)

II. DATA

), 4

IIl. METHODS

lim prob [Event in (t,t+At)]=pAt, (1)
At—0 the spectrum is given by
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2 C. Noise reduction

S(w)= (6) Measured time series of natural systems often contain a
large amount of additive observational noise. The fitted

LSSM can be applied as a linear filter to perform a noise

It is important to emphasize that first order linear stochastiGey,ction on the data even if it is misspecified as a dynamical
dynamical systems have the samelependence of the Spec- 44| of the underlying process. If the LSSM describes the

trum as the classical shot noise model, see(Bp. second order properties of the process correctly, the LSSM is
Most often, x cannot be observed directly, but only a the optimal linear filtef21].

a’+ w?

scalar functiong(x). Furthermore, the observatignmight Algorithmically the noise reduction is achieved by first
contain additive measurement noise, denoted;by applying the Kalman filter, which yields an estimatexgf)
based on the observed datél),y(2),...,y(t). Then the
y:g(§)+ 7. 7) so-called smoothing filter is applied backwards in time to

obtain estimateg(t) based on the whole data §&t1]. The
While the noises in Eq. (4) drives the dynamics, the mea- possibility to apply this smoothing filter relies on the prop-
surement noise; in Eq. (7) only disturbs the obsérvation of €y of linear stochastic processes to be time reversible, see

the system. For the case of a linear dynamical system, EGec. Il D. Multiplication ofX(t) by the estimatec yields
(5), with white additive observational noise of variane an estimate of the noise-free scalar observgitg.

the spectrum reads The statistical properties of the estimaﬁe(dl) can be un-
derstood in the frame of Bayesian estimation, see R3]
o2 for a detailed discussion. The model with its fitted param-
S(w)= .z +R. (8)  eters represents a prior on the smoothness of the hidden
o w

Conditioned on this prior a maximum likelihood estimate of
y(t) is obtained. The estimated time series is the most prob-
Since measured data are sampled, discrete time dynamicgble one assuming the validity of the model, Etp).
models It should be emphasized that the estimated time series
does not represent a typical realization of the fitted model
X(t)=h(xX(t—At), e(t)), (9)  used as prior. Even if the fitted model is the true one, the
estimated time course is a slightly low-pass filtered version

are often used. If both the dynamical and the measuremeﬁlﬁ a typical realization. If the fitted model is, however, not

. G ian distributed d the f asd the true model, the estimated time series will show statistical
Iri]r?gar air: aussian distributed, and the functioafidg are . yherties which, literally spoken, lie between those of the

process which generated the data and the model used as

R R R R prior. Especially, if the true process is nonlinear showing a

X(t)=Ax(t—At)+e(t), e(t)~N(0,Q), strong time irreversibility, this quantity might be reduced for
(100  the estimated time series. Thus, the procedure does not lead

> to false positive results.
y(H)=CX(t)+ (1), n(1)~N(OR), P

. L D. The relation between linear models and shot noise models

the linear state space modglSSM) as a generalization of _ . )

the well known autoregressive models results. They repre- Linear autoregressive and shot noise processes are both

sent discrete time versions of the continuous time linear stostochastic processes. The randomness driving these pro-

chastic models. The matri determines the dynamics of the cesses usually reflects the restricted knowledge about the dy-

unobserved state vectaft). Its dimension reflects the order "amics at work. Often, the dynamics is exposed to numerous

of the process. The vect® maps the state vector to the influences that cannot be taken into account explicitly. Even

observation. In the case of scalar dynamidss related to if these influences are deterministic in nature they effectively
the relaxatic;n time scale by 7= — 1/log/Al. The mathemati- act as random influences due to their large number. The char-

cal formalism of the LSSM and procedures to estimate its5’;1cteristic difference between autoregressive and shot noise
parameters are described in detail in Rg19,21] processes is the way the randomness enters the prégdas:

To test the consistency of a fitted model with the data, agynamical processes _it describ_es a random _force th‘f’“ influ-
least three criteria should be applied ences the dynamics in every instant of tini&) In point
(1) The variance of the prediction residuals does not deProCesses it acts as a trigger that generates a certain event

crease significantly for larger model dimensions. only at certain points in time. .

(2) The spectra calculated from the fitted LSSM for larger . However, fchere is a formal connectmn_between the t_:las-
model dimensions coincide. S|cal_ shot noise process and the“scalar linear ;t.ochasnlc dy-
(3) An appropriate model should turn the correlations inn"’“‘mc"’\I pr,ocess. Formally, and “not in _the spirit of point

the data into prediction residuals consistent with white noisePrc€sses’10], one can transform Eq2) into

In the frequency domain this hypothesis can be tested by X(1)=(1— At/7) x(t— At) + e(t) (11)
comparing the periodogram of the residuals with the ex- '

pected straight line in the case of white noise by the

Kolmogorov-Smirnov tesf22]. wheree(t) has the specific form:
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0 with probability 1— pAt wants to test fof48]. In testing for linearity this is achieved
1M ith orobability pA (12 by randomizing the phases of the Fourier transform of the
with probability pAt. data and transforming the result back to the time domain. A

. . o possible static nonlinearity in the observatig{x) in Eq.
Thus, forpAt~1 andM following a Gaussian distribution, (7), is known to produce spurious significant resyKs].

there is a formal equivalence between the scalar linear aurperefore, a proper adjustment of the distribution of the time
toregressive process and the classical shot noise procegsyies data is performed. For many realizations of time series
which is characterized by its exponentially decaying shok,m this procedure, the same algorithm as to the original

profile. In practiceAt corresponds to the sampling interval. 4414 s applied leading to a distribution of the feature calcu-
The conditionpAt~1 means that the process is highly un-aieq py the algorithm assuming linearity. A significant dif-
dersampled, since single shots are not resolved. The requirgdrence petween the distribution of the feature produced by
Gaussianity of the distribution of the initial values of the e gigorithm for the surrogate data and the original data is
shots does not meet the physical constraint of positivity inaken as an indication that the process underlying the original
the astrophysical context of x-ray bursts. In the lipist 5 ot 4 Gaussian, stationary, stochastic, linear one. A signifi-
~1 it might be an effective description resulting from the cant result of the test does not necessarily indicate chaoticity
superposition of the unresolved Poisson process. of the process, since this is only one possibility to violate the
In summary, scalar linear dynamical processes are a cefy| hypothesis.
tain formal limiting case of shot noise models. Only in the  Eormer analysis revealed that it is unlikely that the Cyg-
case of linearity, there is no interaction between the excitan s x-1 as well as other comparable x-ray sources represent
tions and time course of the shots. It should be noted that, ig |ow-dimensional chaotic systef6,50,51. Therefore, we
general, nonlinear stochastic dynamical systems cannot bg,y|y the surrogate data test to look for deviations from the

€(t)

formulated as a formal limit of shot noise models. null hypothesis in general.
The results of the surrogate data test for a feafuaee
E. Beyond linear models: Time irreversibility usually reported as significan&
An important property of linear Gaussian processes is [f—(Fsur
time reversibility, i.e., the statistical properties of the process S= T (13
surr

are the same forward and backward in tif@d]. An intuitive
explanation is that the statistical properties of these process
are completely captured by the autocorrelation function

Wh.'Ch is by deflnlt[on symmetric gnder time _reversal. Sh.OtAssuming a Gaussian distribution for the feature a value of
noise processes with nonsymmetric shot profiles are not tlmgz 2.6 corresponds to a significance leveleof 0.01

g;ﬁgsslgsita%ﬁrhee T;ZZ( tr;og]!'gﬁfgeg)r/girgfjl rz)s/:\%ns.ro-fhe We propose here a surrogate data analysis based on time
y 9 P reversibility. Generalizing a suggestion of Weig&4], a

cess is crucial for time reversibility. Any deviation from imple measure denoted Iy(m) for a deviation from re-

Gaussianity leads to time irreversibility even in the case Oﬁersibilit for a certain time laam was introduced in Ref
linear dynamicq24]. This is of special interest in view of [25] y gn )

Eqg. (12). While time reversibility has been used to test for
nonlinearity in dynamical system®5-28, we will use it

9\?nere<f)surr denotes the mean of the distribution of the
feature for the surrogates antd, ., its standard deviation.

([x(t+m)—x(1)]3)

here as an indicator for a shot noise model. A test for time Q(m)= . (14)
irreversibility in this context will be discussed in the next ([x(t+ m)—x(t)]z)
section.

More complex measures for time irreversibility based on

F. Nonlinear analysis: The method of surrogate data conditional, respectively joint probability distributions are

. . . described in Refd.26—-2§.
The theory of nonlinear dynamical systems offers notions Since it is not clear beforehand at which lata possible

to characterize processes beyond linearity, see 23530 deviation from the null hypothesis might result in a signifi-

for a review. Different quantities have been invented to re'cantQ(m) statistics, the significance(m) will be evalu-
veal whether an observed time series is a realization of ted for all lags up, to a maximum lag. This leads to the
chaotic system; among cthers, the correlation OIImenSIOIgtatistical problem of multiple testing. It is important to em-

[31], Lyapunov exponent$32], and nonlinear forecasting hasi . . I
2 asize that this has an impact on the level of significance
e.rrors[33]. It has been observed later that due to th_e fmneﬁe_, the probability to reject the null hypothesis although it is

calculate these quantities can give false positive results tue. If the nul hypothesis is tested inindependent tests at
To test the re?iabilit of the rgesults thepmethod of sur.ro-the level a, the probability to reject the null hypothesis at
y ’ least once is given by

gate data has been invented independently by different au-
thors, e.g.[34—38, but has been made most popular by Ref.

[25]. It has found wide applications in the analysis of astro- ?&:1—(1— a)". (19
physical[36,39-41], geophysical42—-44, and biophysical o
[45-47 data. For example, forx=0.01 andn= 10, the actual significance

The general idea is to simulate time series whose statistievel « is 0.1, leading to a ten times higher probability for an
cal properties are constrained to the null hypothesis onécorrect rejection of the null hypothesis than expected. A
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simple cure to this problem is the Bonferroni correcti6g]. 3
Therefore, Eq(15) is solved fora:

a=1—(1—a)™. (16)

Sincea<1, the right hand side of Eq16) can be approxi-
mated in first order, resulting in the simple rule

counts

a=aln. (17)

This procedure is known to be extremely conservative, i.e., 0 . .
while it guarantees that the significance level is correct, the 0 100 i 200 300
test loses its diagnostic power to detect a violation of the null time [:samp'"gl”"'tsl
hypothesis. For some test statistics, procedures are known to 1.2 | (b)
obtain tests that have the correct significance level as well as
a good diagnostic power, see, e.g., R€&—-54. It is not
known to the authors how to apply an analogous strategy to 08 |
theQ(m) statistics. The main problem is that the correlations
in the time series produced by the underlying dynamics of
the process lead to correlations between@{en) statistics 04 r
for different lags. Thus, the only cure known to the authors is
to check whether the results of an analysis of one time series
can be reproduced by the analysis of independent measure- 0
ments. Therefore, we subdivide our time series into segments . . . -
of length 20 000 data points each and calculate the averaged 20 40 60 80 100
Q(m) statistics and its confidence interval. lag m'[sampllng' units]

To reveal the expected behavior of {¢m) statistics for ©
shot noise processes, we simulate an exponential shot noise 120 |
process with intensity=0.1, 7= 15, initial valuesM; drawn
from a uniform distribution in the intervdlo,1], and apply
the Q(m) statistics. Figure @) shows a segment of the 80
simulated data. Figureq® and Zc) display theQ(m) sta- ®
tistics and the significances(m) for different lagsm based
on a realization of the process of length 20 000 data points. 40 -
The monotonically decaying behavior of tt®m) curve
does not depend on the intensity, the relaxation time, or the
distribution of the shot noise process. Of course, the quanti- 0 i
tative behavior does. Classical shot noise and first order lin- 20 40 60 80 100

. . . . lag m [sampling units]

ear stochastic dynamical systems cannot be discriminated by
linear methods since their spectra coincide. The simulation FIG. 2. Analysis of a simulated shot noise procéasSegment
shows that higher order statistical properties allow for a disof a realization of an exponential shot noise process with intensity
crimination. Next we apply this concept to the analysis ofp=0.1 and decay time= 15 sampling units(b) The Q(m) statis-
measured data. tics, Eq.(14). (c) SignificancesS(m), Eq. (13).

Q(m)

V. RESULTS Figure 3 displays the periodogram of the first segment and
' the spectra calculated from fitted one- to three-dimensional

We discuss the results for the time series of the intermemodels on a log-linear and on a log-log scale. The spectrum
diate state in detail. For the linear analysis, the results for théalculated from the fitted parameters well explains the over-
intermediate and low state data are comparable. Differenced! periodogram of the data. Furthermore, there is no signifi-

for the nonlinear analysis will be presented in more detail incant difference between the spectra of fitted different dimen-
Sec. IV B. sional processes. The relaxation time of the scalar model is

14.2 sampling units corresponding to 55 ms. The
Kolmogorov-Smirnov test does not reject the hypothesis of
white noise residuals at the 1% level of confidence.

We fit linear state space mode(kSSM), Eq. (10), of With respect to the dimension of the model, a fit of
increasing dimension to segments of the intermediate stateSSM’s of dimension one to three to the remaining 31 seg-
time series of length 20,000. In accordance with the resultsnents confirms the result for the first segment. For the pieces
of Ref.[8] for the low state, the residual variance is constantof 20 000 data points as well as for the whole data set the
for all models of dimension larger than zero. Furthermorespectra calculated from the estimated parameters do not dif-
the analysis reveals an equal contribution of signal and noisger from the spectra of the scalar model. The estimated re-
to the total variance of the time series. laxation times range from 12.4 to 17.4 sampling units, cor-

A. Linear analysis by state space models
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' ' length 20 000 up to a maximum lag of 1000 sampling units
corresponding to 3.9 s of the observation. We use 100 sur-
rogate data sets to estimate the mean and the variance of the
Q(m) statistics, Eq(14) for the null hypothesis of linearity

to calculate the significanceXm), Eq. (13).

For the first segment, at above lag 800 the significance
S(m) of the Q(m) statistics for time reversibility results in a
value larger than 4Fig. 4(@)]. This corresponds to a prob-
ability for the null hypothesis smaller than 18 As dis-
cussed in Sec. Il F, the results of the nonlinear analysis by
the surrogate data method using @ém) statistics has to be

. — : based on the consistency of the results for independent mea-
0 32 Eis ugrfc [H2] % 128 surements due to the multiple testing problem. Figures-4
quency 4(d) display the results for the following 20 000 data point
segments of the time series. There is no consistent deviation
from the null hypothesis for any lag.

Linear analysis reveals that the signal to noise ratio is
equal to 1 if measured in relative amplitudes. This large
amount of observational noise diminishes the diagnostic
power of the surrogate data test to detect a possible time
irreversibility. As discussed in Sec. Ill B, the LSSM can be
applied to estimate the noise-free dynamical time series
within a Bayesian framework. Figure 5 displays the results
for the Kalman(and smoothingfiltered data based on the
one-dimensional LSSM analogous to Fig. 4. For large lags
no significant changes appear apart from a smoother behav-
ior of the curve which results from the low-pass filter prop-

Frequency erty of the estimation procedure as discussed on Sec. Il B.
But for small lags the behavior of the curves changes: Figure

FIG. 3. Periodogram of the datdoty and spectrgsolid lineg 6 shows the significance&Xm) of the Q(m) statistics for the
calculated from the estimated parameters of the state space mogglst 100 lags. Consistently, a significant deviation from lin-
of dimension one to three in log-linear scélep) and log-log scale earity is found for exactly those lags up to the time scale of
(bottom). Note that the spectra are virtually indistinguishable. approximately 15 sampling units that was found as typical

. time scale by the linear analysis. Note that the resultin
resp_ondmg fo 4810 6B ms. For the datg setfrom low state th§(m) curves ¥or the Kalman—fiI):ered data resemble the deg-]
qualitative results of the linear analysis are the same as fo&‘

10 F

0.1

Power

0001 |

10

0.1 ¢

Power

0.001

the intermediate state, but the relaxation times range from 4 aying curve expected for a shot noise model, Fig. 2, while

. . . .the raw data suggest a maximum at around ten sampling
to 56 samplm_g units, corresponding fo 150 to 220 ms, "Nunits. The similarity of the results for larger time scales and
accordance with the results reported in Ré&i.

; : ) . the differences for short time scales can be interpreted in the
Linear analysis methods, like spectral analysis, only cap

. X frame of shot noise models. For lags much larger than the
ture the second order_statlsucal properties of a Process. F? laxation time of the shots, the data are independent and the
linear processes the h'gh.ef order_propernes are a funcnon (m) statistics is expected to vanish. The appearance of the
the second order correlations. This does not hold for nonling . . ' . )

. . Ss(m) is determined by correlated fluctuations, as discussed
ear processes. Therefore, it could be possible that there j

) . X . in Sec. Il F. For time scales smaller than the relaxation time
some nonlinear dynamics at work in the process under inves-

tigation which is invisible for linear analysis. If such nonlin- ?rgxiesrgmssé;hgg (n21) 'I'Srtztlj;tllfccaieirceeSt:ge?\:\tg:sgttl%edrlggslatgt for
ear dynamics can be described by 4, it can be con- the raw a,nd the P%alrﬁan—filtered data is an effect of the la

cluded that its dimension is not larger than 1. Any higher-d dent sianal t : tio. This i N d fg
dimensional continuous-time system would have led to a dif; ependent signat o noise ratio. This IS most pronounced for

ference between the spectra of the one- and the highet_be shortest lags, since the time course of each shot is con-

: : ) : . . inuous, but the observational noise is discontinuous, leadin
dimensional LSSM’s, since it would produce linear correla- 9

tions for an order of at least the dimension of the process. | 0 a decreasing signal to noise ratio for smaller lags. This is
the same line of argument, a nonlinear first order dynamica{l 2 ;stsggtghﬁ(m) tends to zero for lags close to zero for
process should have effected the higher order spectra. Thug, Since the kalman filter is linear, it is not expected to lead
the linear analysis strongly suggests a linear stochastic first ' P

order process for a description of the data in the frame Os?u?jrtm\?\lli Lizu'lthsé -fl;tr:('es dh(?r?e?c;?nnegggggidngatzlmglnagg?e
dynamical systems. Y g

data and calculated the significan8ém) of the Q(m) sta-
tistics for these data and data obtained by the Kalman filter.
The results are displayed in Fig. 7 and show that the Kalman
First, we apply the surrogate data based search for devidilter does not produce spurious results for processes that are
tions from linearity as described in Sec. Il F to segments oftime reversible. Simulation studies using shot noise pro-

B. Nonlinear analysis
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FIG. 4. Significance$(m) of the Q(m) statistics for lags up to 1000&) First segment of the intermediate state data(bgt(d) Results
for the second to the fourth segment.

cesses with added observational noise show that the Kalman- For both time series, our analysis shows that the linear
filtered data reproduce the behavior of t8e&m) curve for  state space model is not an appropriate model to describe the
shot noise processes as displayed in Fig. 2. Thus, the signifitata, since the significant time reversibilities calculated
cant results are not due to the Bayesian estimation by thBased on the fitted models contradict the assumption of these

Kalman filter (Sec. Il B). This is reasonable since in the models. It is, however, important to note that the LSSM can
worst case this linear fllterlng “pU"S” the data in the direc- be used to perform an efficient noise reduction.

tion of behaving more linearly. That means that an existing
time irreversibility would be decreased, but no spurious sig-
nificant effects are introduced.

Figure 8 shows the mean and 2onfidence region of the We have developed methods and have discussed how it is
significanceS(m) of the Q(m) statistics obtained from the possible to decide based on measured data whether a time
32 segments of length 20 000 based on the raw and the noisseries that even comprises a large amount of additive obser-
reduced time series from the intermediate state. Figure 9 disrational noise has been produced by a scalar linear stochastic
plays the corresponding plot for the 19 segments from thelynamical system or a shot noise process. We have shown
low state time series. For both data sets$(e) curves for  that linear spectral analysis does not allow for discrimina-
the raw and the Kalman-filtered time series are statisticallfion. The nonlinear property of time irreversibility of shot
indistinguishable for larger lags. Significant differences arisenoise processes form the basis for a significant distinction. A
only for small lags. Based on the analysis of the raw datastraightforward evaluation of this feature is hampered by the
any kind of shot noise model would be rejected. For thestatistical problem of multiple testing and effects of additive
analysis based on the Kalman-filtered data, $m) curve  observational noise. We have discussed how these problems
for the low state time series suggests a classical shot noismn be overcome.
model by its decay for small lags and insignificant values for We have applied methods from linear and nonlinear time
larger lags, compare Fig. 2. For the intermediate state timeeries analysis to two x-ray variability lightcurves of the
series, a significant maximum occurs at a fa@f 30 sam-  black hole candidate Cygnu§1. The first time series was
pling units, corresponding to 117 ms. This maximum cannotecorded while CygnuX-1 was in an intermediate stat@],
be reproduced by a simple shot noise model and calls fothe second represents the low state. Such data are usually
more complex processes discussed in Sec. Il A. described by shot noise models, a specific kind of point pro-

V. DISCUSSION
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FIG. 5. Significance$(m) analogous to Fig. 4. Dashed lines: Results for the raw data. Solid lines: Results for data after Kalman filtering.

cesses. Although point processes are fundamentally differehiSSM, no discriminating conclusions can be drawn with re-
from dynamical systems, they share some properties with thgpect to the question whether a dynamical system or a shot
latter. First, the spectrum of the classical shot noise proceswise process has generated the data. Therefore, astrophysi-
coincides with that of a scalar continuous time linear Gausseal interpretations of the parameters of fitted LSSM'’s
ian stochastic process. Second, most shot noise models sh&856,57 should be treated with care.
the property of most nonlinear dynamical systems of being Astrophysical studies indicate that the processes under in-
time irreversible. vestigation follow some kind of shot noise model
First, we have fitted linear state space modeSSM’s) [3-5,8,13,16,58—60In general, shot noise models are not
of increasing dimension to segments of the data. The varireversible in time. Surrogate data testing for time irrevers-
ance of the prediction residuals is not decreasing for model#ility for different lags introduces the multiple testing prob-
of dimension larger than zero and the spectra calculated fronem. Therefore, we have investigated whether consistent re-
the fitted parameters of the different models coincide, sugsults could be obtained from an analysis of segments of the
gesting a scalar dynamical model. Testing the consistency dfme series.
the prediction residuals with white noise has revealed a good For the raw data of the low state time series, no significant
overall fit. The linear analysis shows that if the process is aleviation from linearity has been detected. However, we
dynamical system, it is linear and one-dimensional. Anyhave found a double well behavior of tiggm) statistics in
higher-dimensional or continuous-time nonlinear dynamicathe case of the intermediate state ddiay. 8). Both results
systems would have led to differences between one- andontradict a simple shot noise model. This might have been
higher-dimensional LSSM’s with respect to the spectra calcaused by the low signal to noise ratio. In the frame of Baye-
culated from the fitted parameters and the variance of theian estimation based on a fitted LSSM, we have applied the
prediction residuals. Furthermore, the analysis suggests Kalman filter to get a noise-reduced time series. Based on
signal to noise ratio of 1. these noise-reduced data, we have found a significant devia-
Fitting a LSSM to data in the time domain is asymptoti- tion from linearity at that time scale found by linear analysis
cally equivalent to fitting its spectrum to the periodogram ofthat are in accordance with results for simulated data from a
the data in the frequency domdif5]. The spectrum of the simple shot noise model. While the results for the low state
classical shot noise process is identical with the spectrum dfime series are in agreement with a simple shot noise model
a first order linear dynamical process. Thus, even if awith independently decaying shots, the intermediate state
goodness-of-fit test in the frequency domain does not reject ime series shows a more complex behavior. Apart from the
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FIG. 6. Significance$(m) of the Q(m) statistics for lags up to 100. Dashed lines: Results for the raw data. Solid lines: Results for data

after Kalman filtering.

decay for small lags the significances show an additionaviolation of the assumptions of the model, in the worst case,
distinct maximum. Our results are based on the estimatetktads to less significant results since the filter is linear. Thus,
noise-reduced time series obtained by the LSSM. Any nois¢he procedure is statistically conservative even if the model
reduction procedure imposes assumptions about the underlis misspecified.

ing process and might lead to artifacts if the assumptions are By its qualitative difference to the results for simple shot
not met as in the present study. In the case considered herenaise models for the intermediate state time seriesQitra)

60 80 100 0 20 40 60 80 100
lag lag [sampling units]

FIG. 7. Results from a simulation study using the fitted LSSM.  FIG. 8. Significance$S(m) of the Q(m) statistics and & con-

The significance$(m) of the Q(m) statistics are calculated for the fidence regions calculated from the 32 segments of length 20 000 of

raw data(solid line) and the data after Kalman filteringlashed intermediate state time series. Dashed line: Raw data. Solid line:
line). Kalman-filtered data.
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' ' ' ' in accordance with astrophysical considerations: x-rays un-
dergo multiple Compton scattering in the corona of hot elec-
trons surrounding CygnuX-1. The shots represent the pro-
! i jection of this spatiotemporal, reaction-diffusion-like
processes on the time axis. The loss of spatial resolution is
responsible for the fact that the resulting process cannot be
) formulated as a dynamical system anymore. This reveals an
interesting aspect of surrogate data testing that might also
apply for other applicationf41]. Initially, testing by surro-
gates was introduced to support the detection of chaotic dy-
namics. Later, it was recognized that a rejection of the null
hypothesis of linear, stochastic, stationary, Gaussian dynam-
, ics does not necessarily indicate chaos, i.e., a special type of
0 20 40 60 80 100 nonlinear, stationary, deterministic dynamics, since there are
lag [sampling units] other possibilities to violate the assumptions of the above
null hypothesi§61-64. Furthermore, surrogate data testing

as characterized as not too informative if simple inspection
standard error calculated from the 19 segments of length 20 000 P b

the low state time series. Dashed line: Raw data. Solid line: f the data reveals adeV|a.t|on from the'null hypothé@ﬁ:
\ In the present case, the linear analysis looks promising at
Kalman-filtered data.

first sight rendering the surrogate data test informative. But
statistics as a measure for time irreversibility poses a conhere, the reason for a significant surrogate data test is not
straint on astrophysical models for this phenomenon. It hashaotic nonlinearity, but the projection from the spatiotem-
been shown that the classical shot noise motlel(3) does  poral into the temporal domain. Thus, the x-ray variability
not satisfactorily describe the process under consideratioflata offer a possibility for a rejection of the null hypothesis
[9]. Therefore, one has to search for more complex modelf a linear dynamical system: The system is not a dynamical
For such models the significance of @¢m) statistics(Fig.  system of the fornx=f(x,€) at all.
8) provides an additional and independent test beyond the' |n summary, following a quotation of G.E.P. Box: “All
usually applied energy and power spectra. For example, Ofodels are wrong, but some are useful,” we propose the use
results exclude shot noise models with symmetrical rise angf the misspecified linear state space model together with the
decay of the shots as discussed in R8&], since such mod-  measure of time reversibility inspired by nonlinear dynamics
els would not lead to a violation of time reversibility. In a5 an additional test to the usually applied energy and power

general, one has to Kalman-filter the data generated by thgnectra to evaluate the validity of astrophysical shot noise
proposed model in the same way as the observed data apghdels on measured data.

test the compatibility of the resultin§(m) curve statisti-
cally.

No explicit test to decide whether a dynamical system or
a shot noise process underlies a measured time series is
known to the authors. Summarizing the results from the lin- J.T. acknowledges the hospitality of the University of
ear and the nonlinear time series methods, the analysiBotsdam. H.U.V. acknowledges financial support by the
strongly suggests that a shot noise model is at work. This iMax-Planck-Gesellschaft.

FIG. 9. Significance$(m) of the Q(m) statistics and twice the
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