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Linear and nonlinear time series analysis of the black hole candidate CygnusX-1
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We analyze the variability in the x-ray lightcurves of the black hole candidate CygnusX-1 by linear and
nonlinear time series analysis methods. While a linear model describes the overall second order properties of
the observed data well, surrogate data analysis reveals a significant deviation from linearity. We discuss the
relation between shot noise models usually applied to analyze these data and linear stochastic autoregressive
models. We debate statistical and interpretational issues of surrogate data testing for the present context.
Finally, we suggest a combination of tools from linear and nonlinear time series analysis methods as a
procedure to test the predictions of astrophysical models on observed data.

PACS number~s!: 05.40.2a, 02.50.Wp, 97.80.Jp
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I. INTRODUCTION

CygnusX-1 is one of the best established black hole c
didates. Mass accretion from its primary HDE 226868 lea
to x-ray emission which exhibits a variability on time scal
of tenths of seconds@1# up to months@2#. The short-time
variability is assumed to be caused by instabilities of
accretion disk and is usually formally described by sh
noise models@3–5# which are a specific kind of point pro
cesses. These models are inspired by hypotheses abou
physics of the accretion process and the processing of x-
by Comptonization in the neighborhood of the black ho
Free parameters of these models, like morphology and
tribution of the shots, are usually tuned to fit the observ
energy or power spectra.

On the other hand, starting from the observed data
characterizing the dynamical structure of this observed v
ability by time series analysis methods might yield valua
constraints on astrophysical models. This characteriza
can be, for example, a fit of an explicit model to the data
the extraction of a feature which captures some typical st
ture of the dynamics. Such a characterization could eit
inspire new astrophysical models or could be used for a
tional tests of the predictions of existing models. Of cour
there is no direct way for a characterization, either by m
eling or by feature extraction, of observed data to an as
physical model: On the one hand, although the goodn
of-fit of a diagnostic model can be evaluated by statisti
tests, these tests might have low diagnostic power to dete
misspecification of the model. On the other hand, a cer
feature discovered in the data might be generated by m
different types of dynamics. Therefore, before drawing c
clusions about the underlying process from data analy
different independent approaches should be used and
plausibility of a fitted model or an extracted feature sho
be judged in the light of astrophysical knowledge.

*Electronic address: Juergen@agnld.Uni-Potsdam.de
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The first step of nonlinear time series analysis is usua
to study the structure of a possible underlying attract
However, methods from nonlinear dynamics did not succ
in establishing a low-dimensional attractor for x-ray ligh
curves of CygnusX-1 @6#. It is also important to mention tha
time series analysis methods usually assume that the un
lying process presents a dynamical system in contrast
shot noise model.

As an alternative to the commonly applied shot no
models, the linear state space model~LSSM! as a generali-
zation of dynamical linear autoregressive models includ
the observational noise has been proposed to model the x
variability of active galactic nuclei in Ref.@7#. Two attractive
properties of this approach are, first, that the LSSM can
fitted to the data in the time domain and, second, tha
explicitly takes the observational noise covering the dyna
ics into account. The state space model has been applie
data from CygnusX-1 in its low state@8#. This analysis has
revealed that a first order autoregressive process desc
the dynamics of the x-ray variability well. This predicts
shot noise model with an exponential decay and a very s
cific mode of excitation of these shots.

In this paper, we analyze x-ray lightcurves of CygnusX-1
from its low and intermediate state by the LSSM as well
by a method which is able to capture deviations from line
ity. In accordance with Ref.@8#, a scalar LSSM results in a fi
that explains the linear correlations of the time series w
However, the nonlinear analysis using a measure for t
reversibility of the process, reveals strong deviations fr
linearity on exactly that dynamical time scale found by t
LSSM. To interpret this result consistently, we discuss
mathematical and astrophysical implications of linear s
chastic and shot noise models.

Finally, we suggest a combination of tools from linear a
nonlinear time series analysis methods as a procedure to
the predictions of astrophysical models on observed data

The organization of the paper is as follows: In Sec. II w
introduce the data under investigation. In Sec. III we disc
shot noise and linear stochastic models and their relat
1342 ©2000 The American Physical Society
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PRE 61 1343LINEAR AND NONLINEAR TIME SERIES ANALYSIS . . .
Furthermore, we explain how we use the method of su
gate data to test for time reversibility. Section IV presents
results, which are discussed in Sec. V.

II. DATA

The data were recorded with the Proportional Counter
ray ~PCA! on board the Rossi X-ray Timing Explore
~RXTE!. The x-ray activity of CygnusX-1 is classified as
low, intermediate, and high, depending on the mean co
rate@9#. Our analysis is based on two data sets: The first d
set was recorded on 22nd May 1996, 19:05:12–19:48
while CygnusX-1 was in its intermediate state@9#. The en-
ergy range was 2.0–14.1 keV~channel range: 0–35!. The
sampling frequency was 256 Hz and the data set consis
655 360 data points. The mean number of counts per bin
38.3 with standard deviation 10.0. The second data set
recorded on 12th February 1996, 9:37:20–10:03:06, w
CygnusX-1 was in its low state. The energy range was 2.
9.9 keV~channel range: 0–35!. The sampling frequency wa
256 Hz and the data set consists of 394 752 data points.
mean number of counts per bin was 18.7 with standard
viation 7.1. Figure 1 displays a 3 s segment of the first d
set. A part of the variability of the data is explained by t
fact that the recording process is a counting process. T
leads to additive uncorrelated observational noise which
Poisson distributed. Due to the high mean count rate
Poisson noise is well approximated by Gaussian noise.

III. METHODS

A. Shot noise processes

Shot noise processes are a specific type of point proce
@10#. Point processes are characterized by a probabilistic
that some event happens at a certain time. For the simp
form of a shot noise model the probabilistic law of occu
rence of events follows a Poisson process and the event
exponential decay with initial valueM and decay timet. A
Poisson process is defined by the property that the prob
ity of an event to take place in a time interval (t,t1Dt) is
proportional toDt in the limit of small intervals:

lim
Dt→0

prob @Event in ~ t,t1Dt !#5rDt, ~1!

FIG. 1. A 3 s segment of the intermediate state time series
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wherer denotes the intensity of the process. The samp
time series consists of a superposition of the single shot
timesTj whose occurrence follows Eq.~1!, i.e.,

x~ t i !5(
j

M Q~ t i2Tj ! e2(t i2Tj )/t ~2!

with Q(z)51 if z>0, Q(z)50 if z,0. We call this process
the classical shot noise process.

The power spectrum of this process~2! is given by@11#

S~v!5
M2 r

1/t21v2
, vÞ0. ~3!

The classical shot noise has already been proposed in
@3# to describe the observed variability of the lightcurves
CygnusX-1. It consists of exponentially decaying shots wi
a fixed initial value which occur in time with a constant ra
of probability. Several generalizations have been propos
Shots with a decay rate drawn from a certain distribut
have been suggested in Refs.@4,12,13#. A distribution for the
initial values of the shots was considered in Ref.@14#.
Vikhlinin et al. @15# introduced interactions between diffe
ent shots. Furthermore, the simple exponential form was
placed by more complicated time courses showing an in
increase from zero to a maximum value followed by a dec
to zero@8#. These types of profiles are supported by Mon
Carlo simulations of astrophysical models of the x-ray p
cessing by spatially resolved Comptonization in a cloud
hot electrons surrounding the accretion disk@16#.

For some generalized shot noise models the power spe
can be calculated analytically@5,11#; otherwise they have to
be estimated from simulated data.

B. Linear stochastic dynamical systems

In contrast to shot noise processes given by Eqs.~1!,~2!,
continuous dynamical systems are given by a differen
equation

xẆ5 fW~xW ,eW !, ~4!

whereeW denotes random perturbations which might influen
the time evolution of the dynamics. An attractive feature
modeling time series by dynamical systems is that the s
cific form of fW(xW ,eW ) might provide insight in the physics a
work, see Refs.@17,18# for two examples from physics an
Refs.@19,20# for application to physiological time series.

In the simplest case, iff (.) is linear inxW and the dynami-
cal noiseeW is Gaussian distributed and additive, the syst
represents linear combinations of damped oscillators and
laxators that are driven by Gaussian noise. Since the mod
linear, all information about the model is captured by t
power spectrum. For a scalar dynamics

ẋ52ax1e, e;WN~0,s2!, ~5!

the spectrum is given by
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S~v!5
s2

a21v2
. ~6!

It is important to emphasize that first order linear stocha
dynamical systems have the samev dependence of the spec
trum as the classical shot noise model, see Eq.~3!.

Most often, xW cannot be observed directly, but only
scalar functiong(xW ). Furthermore, the observationy might
contain additive measurement noise, denoted byh:

y5g~xW !1h. ~7!

While the noiseeW in Eq. ~4! drives the dynamics, the mea
surement noiseh in Eq. ~7! only disturbs the observation o
the system. For the case of a linear dynamical system,
~5!, with white additive observational noise of varianceR,
the spectrum reads

S~v!5
s2

a21v2
1R. ~8!

Since measured data are sampled, discrete time dynam
models

xW~ t !5hW „xW~ t2Dt !,eW~ t !…, ~9!

are often used. If both the dynamical and the measurem
noise are Gaussian distributed, and the functionshW andg are
linear, i.e.,

xW~ t !5AxW~ t2Dt !1eW~ t !, eW~ t !;N~0,Q!,
~10!

y~ t !5CxW~ t !1h~ t !, h~ t !;N~0,R!,

the linear state space model~LSSM! as a generalization o
the well known autoregressive models results. They rep
sent discrete time versions of the continuous time linear
chastic models. The matrixA determines the dynamics of th
unobserved state vectorxW (t). Its dimension reflects the orde
of the process. The vectorC maps the state vector to th
observation. In the case of scalar dynamics,A is related to
the relaxation time scalet by t521/loguAu. The mathemati-
cal formalism of the LSSM and procedures to estimate
parameters are described in detail in Refs.@19,21#.

To test the consistency of a fitted model with the data
least three criteria should be applied.

~1! The variance of the prediction residuals does not
crease significantly for larger model dimensions.

~2! The spectra calculated from the fitted LSSM for larg
model dimensions coincide.

~3! An appropriate model should turn the correlations
the data into prediction residuals consistent with white no
In the frequency domain this hypothesis can be tested
comparing the periodogram of the residuals with the
pected straight line in the case of white noise by
Kolmogorov-Smirnov test@22#.
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C. Noise reduction

Measured time series of natural systems often conta
large amount of additive observational noise. The fitt
LSSM can be applied as a linear filter to perform a no
reduction on the data even if it is misspecified as a dynam
model of the underlying process. If the LSSM describes
second order properties of the process correctly, the LSS
the optimal linear filter@21#.

Algorithmically the noise reduction is achieved by fir
applying the Kalman filter, which yields an estimate ofxW (t)
based on the observed datay(1),y(2), . . . ,y(t). Then the
so-called smoothing filter is applied backwards in time

obtain estimatesxŴ (t) based on the whole data set@21#. The
possibility to apply this smoothing filter relies on the pro
erty of linear stochastic processes to be time reversible,
Sec. III D. Multiplication of xW (t) by the estimatedC yields
an estimate of the noise-free scalar observabley(t).

The statistical properties of the estimatedŷ(t) can be un-
derstood in the frame of Bayesian estimation, see Ref.@23#
for a detailed discussion. The model with its fitted para
eters represents a prior on the smoothness of the hiddenxW (t).
Conditioned on this prior a maximum likelihood estimate
y(t) is obtained. The estimated time series is the most pr
able one assuming the validity of the model, Eq.~10!.

It should be emphasized that the estimated time se
does not represent a typical realization of the fitted mo
used as prior. Even if the fitted model is the true one,
estimated time course is a slightly low-pass filtered vers
of a typical realization. If the fitted model is, however, n
the true model, the estimated time series will show statist
properties which, literally spoken, lie between those of
process which generated the data and the model use
prior. Especially, if the true process is nonlinear showing
strong time irreversibility, this quantity might be reduced f
the estimated time series. Thus, the procedure does not
to false positive results.

D. The relation between linear models and shot noise models

Linear autoregressive and shot noise processes are
stochastic processes. The randomness driving these
cesses usually reflects the restricted knowledge about the
namics at work. Often, the dynamics is exposed to numer
influences that cannot be taken into account explicitly. Ev
if these influences are deterministic in nature they effectiv
act as random influences due to their large number. The c
acteristic difference between autoregressive and shot n
processes is the way the randomness enters the process:~i! In
dynamical processes it describes a random force that in
ences the dynamics in every instant of time.~ii ! In point
processes it acts as a trigger that generates a certain e
only at certain points in time.

However, there is a formal connection between the cl
sical shot noise process and the scalar linear stochastic
namical process. Formally, and ‘‘not in the spirit of poi
processes’’@10#, one can transform Eq.~2! into

x~ t !5~12Dt/t! x~ t2Dt !1e~ t !, ~11!

wheree(t) has the specific form:
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e~ t !5H 0 with probability 12rDt

M with probabilityrDt.
~12!

Thus, forrDt'1 andM following a Gaussian distribution
there is a formal equivalence between the scalar linear
toregressive process and the classical shot noise pro
which is characterized by its exponentially decaying s
profile. In practiceDt corresponds to the sampling interva
The conditionrDt'1 means that the process is highly u
dersampled, since single shots are not resolved. The req
Gaussianity of the distribution of the initial values of th
shots does not meet the physical constraint of positivity
the astrophysical context of x-ray bursts. In the limitrDt
'1 it might be an effective description resulting from th
superposition of the unresolved Poisson process.

In summary, scalar linear dynamical processes are a
tain formal limiting case of shot noise models. Only in t
case of linearity, there is no interaction between the exc
tions and time course of the shots. It should be noted tha
general, nonlinear stochastic dynamical systems canno
formulated as a formal limit of shot noise models.

E. Beyond linear models: Time irreversibility

An important property of linear Gaussian processes
time reversibility, i.e., the statistical properties of the proc
are the same forward and backward in time@24#. An intuitive
explanation is that the statistical properties of these proce
are completely captured by the autocorrelation functi
which is by definition symmetric under time reversal. Sh
noise processes with nonsymmetric shot profiles are not
reversible as are many nonlinear dynamical systems.
Gaussianity of the noisee(t) of a linear autoregressive pro
cess is crucial for time reversibility. Any deviation from
Gaussianity leads to time irreversibility even in the case
linear dynamics@24#. This is of special interest in view o
Eq. ~12!. While time reversibility has been used to test f
nonlinearity in dynamical systems@25–28#, we will use it
here as an indicator for a shot noise model. A test for ti
irreversibility in this context will be discussed in the ne
section.

F. Nonlinear analysis: The method of surrogate data

The theory of nonlinear dynamical systems offers notio
to characterize processes beyond linearity, see Refs.@29,30#
for a review. Different quantities have been invented to
veal whether an observed time series is a realization o
chaotic system; among others, the correlation dimens
@31#, Lyapunov exponents@32#, and nonlinear forecasting
errors@33#. It has been observed later that due to the fin
size of data, noise, and linear correlations, the algorithm
calculate these quantities can give false positive results.

To test the reliability of the results, the method of surr
gate data has been invented independently by different
thors, e.g.,@34–38#, but has been made most popular by R
@25#. It has found wide applications in the analysis of ast
physical @36,39–41#, geophysical@42–44#, and biophysical
@45–47# data.

The general idea is to simulate time series whose stat
cal properties are constrained to the null hypothesis
u-
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wants to test for@48#. In testing for linearity this is achieved
by randomizing the phases of the Fourier transform of
data and transforming the result back to the time domain
possible static nonlinearity in the observation,g(xW ) in Eq.
~7!, is known to produce spurious significant results@49#.
Therefore, a proper adjustment of the distribution of the ti
series data is performed. For many realizations of time se
from this procedure, the same algorithm as to the origi
data is applied leading to a distribution of the feature cal
lated by the algorithm assuming linearity. A significant d
ference between the distribution of the feature produced
the algorithm for the surrogate data and the original data
taken as an indication that the process underlying the orig
is not a Gaussian, stationary, stochastic, linear one. A sig
cant result of the test does not necessarily indicate chaot
of the process, since this is only one possibility to violate
null hypothesis.

Former analysis revealed that it is unlikely that the Cy
nusX-1 as well as other comparable x-ray sources repre
a low-dimensional chaotic system@6,50,51#. Therefore, we
apply the surrogate data test to look for deviations from
null hypothesis in general.

The results of the surrogate data test for a featuref are
usually reported as significanceS:

S5
u f 2^ f &surru

ssurr
, ~13!

where ^ f &surr denotes the mean of the distribution of th
feature for the surrogates andssurr its standard deviation
Assuming a Gaussian distribution for the feature a value
S52.6 corresponds to a significance level ofa50.01.

We propose here a surrogate data analysis based on
reversibility. Generalizing a suggestion of Weiss@24#, a
simple measure denoted byQ(m) for a deviation from re-
versibility for a certain time lagm was introduced in Ref.
@25#:

Q~m!5
^@x~ t1m!2x~ t !#3&

^@x~ t1m!2x~ t !#2&
. ~14!

More complex measures for time irreversibility based
conditional, respectively joint probability distributions a
described in Refs.@26–28#.

Since it is not clear beforehand at which lagm a possible
deviation from the null hypothesis might result in a signi
cant Q(m) statistics, the significancesS(m) will be evalu-
ated for all lags up to a maximum lag. This leads to t
statistical problem of multiple testing. It is important to em
phasize that this has an impact on the level of significancea,
i.e., the probability to reject the null hypothesis although it
true. If the null hypothesis is tested inn independent tests a
the levela, the probability to reject the null hypothesis
least once is given by

ã512~12a!n. ~15!

For example, fora50.01 andn510, the actual significance
level ã is 0.1, leading to a ten times higher probability for a
incorrect rejection of the null hypothesis than expected
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1346 PRE 61JENS TIMMERet al.
simple cure to this problem is the Bonferroni correction@52#.
Therefore, Eq.~15! is solved fora:

a512~12ã !1/n. ~16!

Sinceã!1, the right hand side of Eq.~16! can be approxi-
mated in first order, resulting in the simple rule

a5ã/n. ~17!

This procedure is known to be extremely conservative,
while it guarantees that the significance level is correct,
test loses its diagnostic power to detect a violation of the n
hypothesis. For some test statistics, procedures are know
obtain tests that have the correct significance level as we
a good diagnostic power, see, e.g., Refs.@52–54#. It is not
known to the authors how to apply an analogous strateg
theQ(m) statistics. The main problem is that the correlatio
in the time series produced by the underlying dynamics
the process lead to correlations between theQ(m) statistics
for different lags. Thus, the only cure known to the authors
to check whether the results of an analysis of one time se
can be reproduced by the analysis of independent meas
ments. Therefore, we subdivide our time series into segm
of length 20 000 data points each and calculate the avera
Q(m) statistics and its confidence interval.

To reveal the expected behavior of theQ(m) statistics for
shot noise processes, we simulate an exponential shot n
process with intensityr50.1, t515, initial valuesMi drawn
from a uniform distribution in the interval@0,1#, and apply
the Q(m) statistics. Figure 2~a! shows a segment of th
simulated data. Figures 2~b! and 2~c! display theQ(m) sta-
tistics and the significancesS(m) for different lagsm based
on a realization of the process of length 20 000 data poi
The monotonically decaying behavior of theS(m) curve
does not depend on the intensity, the relaxation time, or
distribution of the shot noise process. Of course, the qua
tative behavior does. Classical shot noise and first order
ear stochastic dynamical systems cannot be discriminate
linear methods since their spectra coincide. The simula
shows that higher order statistical properties allow for a d
crimination. Next we apply this concept to the analysis
measured data.

IV. RESULTS

We discuss the results for the time series of the interm
diate state in detail. For the linear analysis, the results for
intermediate and low state data are comparable. Differen
for the nonlinear analysis will be presented in more detai
Sec. IV B.

A. Linear analysis by state space models

We fit linear state space models~LSSM!, Eq. ~10!, of
increasing dimension to segments of the intermediate s
time series of length 20,000. In accordance with the res
of Ref. @8# for the low state, the residual variance is const
for all models of dimension larger than zero. Furthermo
the analysis reveals an equal contribution of signal and n
to the total variance of the time series.
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Figure 3 displays the periodogram of the first segment
the spectra calculated from fitted one- to three-dimensio
models on a log-linear and on a log-log scale. The spect
calculated from the fitted parameters well explains the ov
all periodogram of the data. Furthermore, there is no sign
cant difference between the spectra of fitted different dim
sional processes. The relaxation time of the scalar mode
14.2 sampling units corresponding to 55 ms. T
Kolmogorov-Smirnov test does not reject the hypothesis
white noise residuals at the 1% level of confidence.

With respect to the dimension of the model, a fit
LSSM’s of dimension one to three to the remaining 31 s
ments confirms the result for the first segment. For the pie
of 20 000 data points as well as for the whole data set
spectra calculated from the estimated parameters do not
fer from the spectra of the scalar model. The estimated
laxation times range from 12.4 to 17.4 sampling units, c

FIG. 2. Analysis of a simulated shot noise process.~a! Segment
of a realization of an exponential shot noise process with inten
r50.1 and decay timet515 sampling units.~b! The Q(m) statis-
tics, Eq.~14!. ~c! SignificancesS(m), Eq. ~13!.
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responding to 48 to 68 ms. For the data set from low state
qualitative results of the linear analysis are the same as
the intermediate state, but the relaxation times range from
to 56 sampling units, corresponding to 150 to 220 ms,
accordance with the results reported in Ref.@8#.

Linear analysis methods, like spectral analysis, only c
ture the second order statistical properties of a process.
linear processes the higher order properties are a functio
the second order correlations. This does not hold for non
ear processes. Therefore, it could be possible that the
some nonlinear dynamics at work in the process under in
tigation which is invisible for linear analysis. If such nonlin
ear dynamics can be described by Eq.~4!, it can be con-
cluded that its dimension is not larger than 1. Any high
dimensional continuous-time system would have led to a
ference between the spectra of the one- and the hig
dimensional LSSM’s, since it would produce linear corre
tions for an order of at least the dimension of the process
the same line of argument, a nonlinear first order dynam
process should have effected the higher order spectra. T
the linear analysis strongly suggests a linear stochastic
order process for a description of the data in the frame
dynamical systems.

B. Nonlinear analysis

First, we apply the surrogate data based search for de
tions from linearity as described in Sec. III F to segments

FIG. 3. Periodogram of the data~dots! and spectra~solid lines!
calculated from the estimated parameters of the state space m
of dimension one to three in log-linear scale~top! and log-log scale
~bottom!. Note that the spectra are virtually indistinguishable.
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length 20 000 up to a maximum lag of 1000 sampling un
corresponding to 3.9 s of the observation. We use 100
rogate data sets to estimate the mean and the variance o
Q(m) statistics, Eq.~14! for the null hypothesis of linearity
to calculate the significancesS(m), Eq. ~13!.

For the first segment, at above lag 800 the significa
S(m) of theQ(m) statistics for time reversibility results in
value larger than 4@Fig. 4~a!#. This corresponds to a prob
ability for the null hypothesis smaller than 1024. As dis-
cussed in Sec. III F, the results of the nonlinear analysis
the surrogate data method using theQ(m) statistics has to be
based on the consistency of the results for independent m
surements due to the multiple testing problem. Figures 4~b!–
4~d! display the results for the following 20 000 data poi
segments of the time series. There is no consistent devia
from the null hypothesis for any lag.

Linear analysis reveals that the signal to noise ratio
equal to 1 if measured in relative amplitudes. This lar
amount of observational noise diminishes the diagno
power of the surrogate data test to detect a possible t
irreversibility. As discussed in Sec. III B, the LSSM can b
applied to estimate the noise-free dynamical time se
within a Bayesian framework. Figure 5 displays the resu
for the Kalman~and smoothing!-filtered data based on th
one-dimensional LSSM analogous to Fig. 4. For large la
no significant changes appear apart from a smoother be
ior of the curve which results from the low-pass filter pro
erty of the estimation procedure as discussed on Sec. II
But for small lags the behavior of the curves changes: Fig
6 shows the significancesS(m) of theQ(m) statistics for the
first 100 lags. Consistently, a significant deviation from li
earity is found for exactly those lags up to the time scale
approximately 15 sampling units that was found as typi
time scale by the linear analysis. Note that the result
S(m) curves for the Kalman-filtered data resemble the
caying curve expected for a shot noise model, Fig. 2, wh
the raw data suggest a maximum at around ten samp
units. The similarity of the results for larger time scales a
the differences for short time scales can be interpreted in
frame of shot noise models. For lags much larger than
relaxation time of the shots, the data are independent and
Q(m) statistics is expected to vanish. The appearance of
S(m) is determined by correlated fluctuations, as discus
in Sec. III F. For time scales smaller than the relaxation ti
of the shots, theQ(m) statistics are significantly differen
from zero, see Fig. 2. The difference between the results
the raw and the Kalman-filtered data is an effect of the
dependent signal to noise ratio. This is most pronounced
the shortest lags, since the time course of each shot is
tinuous, but the observational noise is discontinuous, lead
to a decreasing signal to noise ratio for smaller lags. Thi
the reason whyS(m) tends to zero for lags close to zero fo
the raw data.

Since the Kalman filter is linear, it is not expected to le
to artificial results. This has been confirmed in a simulat
study. We use the fitted one-dimensional LSSM to gene
data and calculated the significanceS(m) of the Q(m) sta-
tistics for these data and data obtained by the Kalman fil
The results are displayed in Fig. 7 and show that the Kalm
filter does not produce spurious results for processes tha
time reversible. Simulation studies using shot noise p

del
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FIG. 4. SignificancesS(m) of theQ(m) statistics for lags up to 1000.~a! First segment of the intermediate state data set.~b!–~d! Results
for the second to the fourth segment.
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cesses with added observational noise show that the Kalm
filtered data reproduce the behavior of theS(m) curve for
shot noise processes as displayed in Fig. 2. Thus, the sig
cant results are not due to the Bayesian estimation by
Kalman filter ~Sec. III B!. This is reasonable since in th
worst case this linear filtering ‘‘pulls’’ the data in the dire
tion of behaving more linearly. That means that an exist
time irreversibility would be decreased, but no spurious s
nificant effects are introduced.

Figure 8 shows the mean and 2s confidence region of the
significanceS(m) of the Q(m) statistics obtained from the
32 segments of length 20 000 based on the raw and the n
reduced time series from the intermediate state. Figure 9
plays the corresponding plot for the 19 segments from
low state time series. For both data sets theS(m) curves for
the raw and the Kalman-filtered time series are statistic
indistinguishable for larger lags. Significant differences ar
only for small lags. Based on the analysis of the raw da
any kind of shot noise model would be rejected. For
analysis based on the Kalman-filtered data, theS(m) curve
for the low state time series suggests a classical shot n
model by its decay for small lags and insignificant values
larger lags, compare Fig. 2. For the intermediate state t
series, a significant maximum occurs at a lagm of 30 sam-
pling units, corresponding to 117 ms. This maximum can
be reproduced by a simple shot noise model and calls
more complex processes discussed in Sec. III A.
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For both time series, our analysis shows that the lin
state space model is not an appropriate model to describe
data, since the significant time reversibilities calculat
based on the fitted models contradict the assumption of th
models. It is, however, important to note that the LSSM c
be used to perform an efficient noise reduction.

V. DISCUSSION

We have developed methods and have discussed how
possible to decide based on measured data whether a
series that even comprises a large amount of additive ob
vational noise has been produced by a scalar linear stoch
dynamical system or a shot noise process. We have sh
that linear spectral analysis does not allow for discrimin
tion. The nonlinear property of time irreversibility of sho
noise processes form the basis for a significant distinction
straightforward evaluation of this feature is hampered by
statistical problem of multiple testing and effects of additi
observational noise. We have discussed how these prob
can be overcome.

We have applied methods from linear and nonlinear ti
series analysis to two x-ray variability lightcurves of th
black hole candidate CygnusX-1. The first time series was
recorded while CygnusX-1 was in an intermediate state@9#,
the second represents the low state. Such data are us
described by shot noise models, a specific kind of point p
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FIG. 5. SignificancesS(m) analogous to Fig. 4. Dashed lines: Results for the raw data. Solid lines: Results for data after Kalman filt
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cesses. Although point processes are fundamentally diffe
from dynamical systems, they share some properties with
latter. First, the spectrum of the classical shot noise proc
coincides with that of a scalar continuous time linear Gau
ian stochastic process. Second, most shot noise models
the property of most nonlinear dynamical systems of be
time irreversible.

First, we have fitted linear state space models~LSSM’s!
of increasing dimension to segments of the data. The v
ance of the prediction residuals is not decreasing for mo
of dimension larger than zero and the spectra calculated f
the fitted parameters of the different models coincide, s
gesting a scalar dynamical model. Testing the consistenc
the prediction residuals with white noise has revealed a g
overall fit. The linear analysis shows that if the process i
dynamical system, it is linear and one-dimensional. A
higher-dimensional or continuous-time nonlinear dynami
systems would have led to differences between one-
higher-dimensional LSSM’s with respect to the spectra c
culated from the fitted parameters and the variance of
prediction residuals. Furthermore, the analysis sugges
signal to noise ratio of 1.

Fitting a LSSM to data in the time domain is asympto
cally equivalent to fitting its spectrum to the periodogram
the data in the frequency domain@55#. The spectrum of the
classical shot noise process is identical with the spectrum
a first order linear dynamical process. Thus, even i
goodness-of-fit test in the frequency domain does not reje
nt
he
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ri-
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l-
e
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LSSM, no discriminating conclusions can be drawn with
spect to the question whether a dynamical system or a
noise process has generated the data. Therefore, astrop
cal interpretations of the parameters of fitted LSSM
@8,56,57# should be treated with care.

Astrophysical studies indicate that the processes unde
vestigation follow some kind of shot noise mod
@3–5,8,13,16,58–60#. In general, shot noise models are n
reversible in time. Surrogate data testing for time irreve
ibility for different lags introduces the multiple testing prob
lem. Therefore, we have investigated whether consisten
sults could be obtained from an analysis of segments of
time series.

For the raw data of the low state time series, no signific
deviation from linearity has been detected. However,
have found a double well behavior of theQ(m) statistics in
the case of the intermediate state data~Fig. 8!. Both results
contradict a simple shot noise model. This might have b
caused by the low signal to noise ratio. In the frame of Ba
sian estimation based on a fitted LSSM, we have applied
Kalman filter to get a noise-reduced time series. Based
these noise-reduced data, we have found a significant de
tion from linearity at that time scale found by linear analys
that are in accordance with results for simulated data from
simple shot noise model. While the results for the low st
time series are in agreement with a simple shot noise mo
with independently decaying shots, the intermediate s
time series shows a more complex behavior. Apart from
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FIG. 6. SignificancesS(m) of theQ(m) statistics for lags up to 100. Dashed lines: Results for the raw data. Solid lines: Results fo
after Kalman filtering.
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line:
decay for small lags the significances show an additio
distinct maximum. Our results are based on the estima
noise-reduced time series obtained by the LSSM. Any no
reduction procedure imposes assumptions about the und
ing process and might lead to artifacts if the assumptions
not met as in the present study. In the case considered h

FIG. 7. Results from a simulation study using the fitted LSS
The significancesS(m) of theQ(m) statistics are calculated for th
raw data~solid line! and the data after Kalman filtering~dashed
line!.
al
d
e
ly-
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violation of the assumptions of the model, in the worst ca
leads to less significant results since the filter is linear. Th
the procedure is statistically conservative even if the mo
is misspecified.

By its qualitative difference to the results for simple sh
noise models for the intermediate state time series, theQ(m)

. FIG. 8. SignificancesS(m) of the Q(m) statistics and 2s con-
fidence regions calculated from the 32 segments of length 20 00
intermediate state time series. Dashed line: Raw data. Solid
Kalman-filtered data.
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statistics as a measure for time irreversibility poses a c
straint on astrophysical models for this phenomenon. It
been shown that the classical shot noise model~1!–~3! does
not satisfactorily describe the process under considera
@9#. Therefore, one has to search for more complex mod
For such models the significance of theQ(m) statistics~Fig.
8! provides an additional and independent test beyond
usually applied energy and power spectra. For example,
results exclude shot noise models with symmetrical rise
decay of the shots as discussed in Ref.@58#, since such mod-
els would not lead to a violation of time reversibility. I
general, one has to Kalman-filter the data generated by
proposed model in the same way as the observed data
test the compatibility of the resultingS(m) curve statisti-
cally.

No explicit test to decide whether a dynamical system
a shot noise process underlies a measured time serie
known to the authors. Summarizing the results from the
ear and the nonlinear time series methods, the ana
strongly suggests that a shot noise model is at work. Thi

FIG. 9. SignificancesS(m) of theQ(m) statistics and twice the
standard error calculated from the 19 segments of length 20 00
the low state time series. Dashed line: Raw data. Solid l
Kalman-filtered data.
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in accordance with astrophysical considerations: x-rays
dergo multiple Compton scattering in the corona of hot el
trons surrounding CygnusX-1. The shots represent the pro
jection of this spatiotemporal, reaction-diffusion-lik
processes on the time axis. The loss of spatial resolutio
responsible for the fact that the resulting process canno
formulated as a dynamical system anymore. This reveals
interesting aspect of surrogate data testing that might
apply for other applications@41#. Initially, testing by surro-
gates was introduced to support the detection of chaotic
namics. Later, it was recognized that a rejection of the n
hypothesis of linear, stochastic, stationary, Gaussian dyn
ics does not necessarily indicate chaos, i.e., a special typ
nonlinear, stationary, deterministic dynamics, since there
other possibilities to violate the assumptions of the abo
null hypothesis@61–64#. Furthermore, surrogate data testin
was characterized as not too informative if simple inspect
of the data reveals a deviation from the null hypothesis@61#.
In the present case, the linear analysis looks promising
first sight rendering the surrogate data test informative.
here, the reason for a significant surrogate data test is
chaotic nonlinearity, but the projection from the spatiote
poral into the temporal domain. Thus, the x-ray variabil
data offer a possibility for a rejection of the null hypothes
of a linear dynamical system: The system is not a dynam

system of the formxẆ5 fW(xW ,eW ) at all.
In summary, following a quotation of G.E.P. Box: ‘‘Al

models are wrong, but some are useful,’’ we propose the
of the misspecified linear state space model together with
measure of time reversibility inspired by nonlinear dynam
as an additional test to the usually applied energy and po
spectra to evaluate the validity of astrophysical shot no
models on measured data.
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